1,059 research outputs found

    Microbial co-habitation and lateral gene transfer: what transposases can tell us

    Get PDF
    Interactions between microbial communities are revealed using a network of lateral gene transfer events

    The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide

    Get PDF
    The Genomes On Line Database (GOLD) is a web resource for comprehensive access to information regarding complete and ongoing genome sequencing projects worldwide. The database currently incorporates information on over 1500 sequencing projects, of which 294 have been completed and the data deposited in the public databases. GOLD v.2 has been expanded to provide information related to organism properties such as phenotype, ecotype and disease. Furthermore, project relevance and availability information is now included. GOLD is available at . It is also mirrored at the Institute of Molecular Biology and Biotechnology, Crete, Greece a

    The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    Get PDF
    The Genomes On Line Database (GOLD) is a comprehensive resource that provides information on genome and metagenome projects worldwide. Complete and ongoing projects and their associated metadata can be accessed in GOLD through pre-computed lists and a search page. As of September 2007, GOLD contains information on more than 2900 sequencing projects, out of which 639 have been completed and their sequence data deposited in the public databases. GOLD continues to expand with the goal of providing metadata information related to the projects and the organisms/environments towards the Minimum Information about a Genome Sequence’ (MIGS) guideline. GOLD is available at http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece at http://gold.imbb.forth.gr

    Draft genome sequences of Bradyrhizobium shewense sp nov ERR11(T) and Bradyrhizobium yuanmingense CCBAU 10071(T)

    Get PDF
    The type strain of the prospective Bradyrhizobium shewense sp. nov. ERR11(T), was isolated from a nodule of the leguminous tree Erythrina brucei native to Ethiopia. The type strain Bradyrhizobium yuanmingense CCBAU 10071(T), was isolated from the nodules of Lespedeza cuneata in Beijing, China. The genomes of ERR11(T) and CCBAU 10071(T) were sequenced by DOE-JGI and deposited at the DOE-JGI genome portal as well as at the European Nucleotide Archive. The genome of ERR11(T) is 9,163,226 bp in length and has 102 scaffolds, containing 8548 protein-coding and 86 RNA genes. The CCBAU 10071(T) genome is arranged in 108 scaffolds and consists of 8,201,522 bp long and 7776 protein-coding and 85 RNA genes. Both genomes contain symbiotic genes, which are homologous to the genes found in the complete genome sequence of Bradyrhizobium diazoefficiens USDA110(T). The genes encoding for nodulation and nitrogen fixation in ERR11(T) showed high sequence similarity with homologous genes found in the draft genome of peanut-nodulating Bradyrhizobium arachidis LMG 26795(T). The nodulation genes nolYAnodD2D1YABCSUIJ-nolO-nodZ of ERR11(T) and CCBAU 10071(T) are organized in a similar way to the homologous genes identified in the genomes of USDA110(T), Bradyrhizobium ottawaense USDA 4 and Bradyrhizobium liaoningense CCBAU 05525. The genomes harbor hupSLCFHK and hypBFDE genes that code the expression of hydrogenase, an enzyme that helps rhizobia to uptake hydrogen released by the N2-fixation process and genes encoding denitrification functions napEDABC and norCBQD for nitrate and nitric oxide reduction, respectively. The genome of ERR11(T) also contains nosRZDFYLX genes encoding nitrous oxide reductase. Based on multilocus sequence analysis of housekeeping genes, the novel species, which contains eight strains formed a unique group close to the B. ottawaense branch. Genome Average Nucleotide Identity (ANI) calculated between the genome sequences of ERR11(T) and closely related sequences revealed that strains belonging to B. ottawaense branch (USDA4 and CCBAU15615), were the closest strains to the strain ERR11(T) with 95.2% ANI. Type strain ERR11(T) showed the highest DDH predicted value with CCBAU15615 (58.5%), followed by USDA 4 (53.1%). Nevertheless, the ANI and DDH values obtained between ERR11(T) and CCBAU 15615 or USDA 4 were below the cutoff values (ANI = 96.5%; DDH = 70%) for strains belonging to the same species, suggesting that ERR11(T) is a new species. Therefore, based on the phylogenetic analysis, ANI and DDH values, we formally propose the creation of B. shewense sp. nov. with strain ERR11(T) (HAMBI 3532(T)= LMG 30162(T)) as the type strain.Peer reviewe

    Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria.

    Get PDF
    The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably

    Genome sequencing suggests diverse secondary metabolism in coral-associated aquimarina megaterium

    Get PDF
    We report here the genome sequences of three Aquimarina megaterium strains isolated from the octocoral Euniceila labiata. We reveal a coding potential for versatile carbon metabolism and biosynthesis of natural products belonging to the polyketide, nonribosomal peptide, and terpene compound classes.info:eu-repo/semantics/publishedVersio
    corecore